Hamiltonian treatment of time dispersive and dissipative media within the linear response theory
نویسنده
چکیده
We develop a Hamiltonian theory for a time dispersive and dissipative (TDD) inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The canonical Hamiltonian constructed here exactly reproduces the original dissipative evolution after integrating out auxiliary fields. In particular, for a dielectric medium we obtain a simple formula for the Hamiltonian and closed form expressions for the energy density and energy flux involving the auxiliary fields. The developed approach also allows to treat a long standing problem of scattering from a lossy non-spherical obstacle and, more generally, wave propagation in TDD media.
منابع مشابه
Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems
We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The proposed Hamiltonian couples the given system to auxiliary fields, in the universal form of a so-called canonical heat bath. After integrating out the heat bath the original dissipative evolution is exactly reproduc...
متن کاملar X iv : m at h - ph / 0 60 80 03 v 1 1 A ug 2 00 6 HAMILTONIAN STRUCTURE FOR DISPERSIVE AND DISSIPATIVE DYNAMICAL SYSTEMS
We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The Hamiltonian constructed here couples a given system to auxiliary fields in the universal form of a so-called canonical heat bath. After integrating out the heat bath, the original dissipative evolution is exactly re...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملHamiltonian Extension and Eigenfunctions for a Time Dispersive Dissipative String
We carry out a detailed analysis of a time dispersive and dissipative (TDD) string, using our recently developed theories of conservative and Hamiltonian extensions of TDD systems. This analysis of the TDD string includes, in particular: (i) an explicit construction of its conservative Hamiltonian extension, consisting of the original string coupled to “hidden strings”; (ii) explicit formulas f...
متن کاملاتلاف در مدارهای الکتریکی کوانتومی مزوسکوپی RLC
The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated. Taking the Caldirola-Kanai Hamiltonian in studding quantum mechanics of dissipative systems, we obtain the persistent current and the energy spectrum of a damped quantum LC-design mesoscopic circuit under the influence of a time-dependent external field.
متن کامل